Published in

De Gruyter Open, Nanophotonics, 16(11), p. 3729-3739, 2022

DOI: 10.1515/nanoph-2022-0292

Links

Tools

Export citation

Search in Google Scholar

A non-interleaved bidirectional Janus metasurface with full-space scattering channels

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Metasurfaces have attracted broad interest thanks to their unprecedented capacity for electromagnetic wavefront manipulation. The compact, ultrathin and multifunctional metasurface calls for novel design principles. Here, we propose and experimentally demonstrate a non-interleaved and non-segmented bidirectional Janus metasurface that encodes multiple functionalities in full-space scattering channels with different propagation directions and polarization in the microwave region. Specifically, by rotating and adjusting the elementary double-arrow-shaped structure within the same meta-atom, the independent phase control can be achieved in both cross-polarized transmission and co-polarized reflection components under oppositely directed incident waves. Our metasurface with broken mirror symmetry can fully exploit four independent information channels under opposite propagation directions. A series of proof-of-concept is constructed to validity of our methodology, and the simulations and experimental results further show that the proposed non-interleaved bidirectional metasurface can provide an attractive platform for various applications, ranging from structured light conversion, optical imaging, multifunctional optical information processing and others.