Published in

World Scientific Publishing, International Journal of Neural Systems, 06(33), 2023

DOI: 10.1142/s0129065723500326

Links

Tools

Export citation

Search in Google Scholar

Facial Expression Recognition with Contrastive Learning and Uncertainty-Guided Relabeling

Journal article published in 2023 by Yujie Yang, Lin Hu, Chen Zu, Qizheng Zhou, Xi Wu, Jiliu Zhou, Yan Wang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Facial expression recognition (FER) plays a vital role in the field of human-computer interaction. To achieve automatic FER, various approaches based on deep learning (DL) have been presented. However, most of them lack for the extraction of discriminative expression semantic information and suffer from the problem of annotation ambiguity. In this paper, we propose an elaborately designed end-to-end recognition network with contrastive learning and uncertainty-guided relabeling, to recognize facial expressions efficiently and accurately, as well as to alleviate the impact of annotation ambiguity. Specifically, a supervised contrastive loss (SCL) is introduced to promote inter-class separability and intra-class compactness, thus helping the network extract fine-grained discriminative expression features. As for the annotation ambiguity problem, we present an uncertainty estimation-based relabeling module (UERM) to estimate the uncertainty of each sample and relabel the unreliable ones. In addition, to deal with the padding erosion problem, we embed an amending representation module (ARM) into the recognition network. Experimental results on three public benchmarks demonstrate that our proposed method facilitates the recognition performance remarkably with 90.91% on RAF-DB, 88.59% on FERPlus and 61.00% on AffectNet, outperforming current state-of-the-art (SOTA) FER methods. Code will be available at http//github.com/xiaohu-run/fer_supCon .