Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, APL Materials, 6(11), 2023

DOI: 10.1063/5.0151227

Links

Tools

Export citation

Search in Google Scholar

Superconductivity at epitaxial LaTiO3–KTaO3 interfaces

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The design of epitaxial interfaces is a pivotal way to engineer artificial structures where new electronic phases can emerge. Here, we report a systematic emergence of an interfacial superconducting state in epitaxial heterostructures of LaTiO3 and KTaO3. The superconductivity transition temperature increases with decreasing thickness of LaTiO3. Such a behavior is observed for both (110) and (111) crystal oriented structures. For thick samples, the finite resistance developing below the superconducting transition temperature increases with increasing LaTiO3 thickness. Consistent with previous reports, the (001) oriented heterointerface features a high electron mobility of 250 cm2 V−1 s−1 and shows no superconducting transition down to 40 mK. Our results imply a non-trivial impact of LaTiO3 on the superconducting state and indicate how superconducting KTaO3 interfaces can be integrated with other oxide materials.