Published in

MDPI, Metabolites, 3(11), p. 156, 2021

DOI: 10.3390/metabo11030156

Links

Tools

Export citation

Search in Google Scholar

Pre-Diagnostic Circulating Metabolites and Colorectal Cancer Risk in the Cancer Prevention Study-II Nutrition Cohort

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Untargeted metabolomic studies have identified potential biomarkers of colorectal cancer risk, but evidence is still limited and broadly inconsistent. Among 39,239 Cancer Prevention Study II Nutrition cohort participants who provided a blood sample between 1998–2001, 517 newly diagnosed colorectal cancers were identified through 30 June 2015. In this nested case–control study, controls were matched 1:1 to cases on age, sex, race and date of blood draw. Mass spectroscopy-based metabolomic analyses of pre-diagnostic plasma identified 886 named metabolites, after quality control exclusions. Conditional logistic regression models estimated multivariable-adjusted odds ratios (OR) and 95% confidence intervals (CI) for 1 standard deviation (SD) increase in each metabolite with risk of colorectal cancer. Six metabolites were associated with colorectal cancer risk at a false discovery rate < 0.20. These metabolites were of several classes, including cofactors and vitamins, nucleotides, xenobiotics, lipids and amino acids. Five metabolites (guanidinoacetate, 2’-O-methylcytidine, vanillylmandelate, bilirubin (E,E) and N-palmitoylglycine) were positively associated (OR per 1 SD = 1.29 to 1.32), and one (3-methylxanthine) was inversely associated with CRC risk (OR = 0.79, 95% CI, 0.69–0.89). We did not replicate findings from two earlier prospective studies of 250 cases each after adjusting for multiple comparisons. Large pooled prospective analyses are warranted to confirm or refute these findings and to discover and replicate metabolites associated with colorectal cancer risk.