Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(13), 2022

DOI: 10.1038/s41467-022-28367-9

Links

Tools

Export citation

Search in Google Scholar

Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTransition metal single atom catalysts (SACs) with M1-Nx coordination configuration have shown outstanding activity and selectivity for hydrogenation of nitroarenes. Modulating the atomic coordination structure has emerged as a promising strategy to further improve the catalytic performance. Herein, we report an atomic Co1/NPC catalyst with unsymmetrical single Co1-N3P1 sites that displays unprecedentedly high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. Compared to the most popular Co1-N4 coordination, the electron density of Co atom in Co1-N3P1 is increased, which is more favorable for H2 dissociation as verified by kinetic isotope effect and density functional theory calculation results. In nitrobenzene hydrogenation reaction, the as-synthesized Co1-N3P1 SAC exhibits a turnover frequency of 6560 h−1, which is 60-fold higher than that of Co1-N4 SAC and one order of magnitude higher than the state-of-the-art M1-Nx-C SACs in literatures. Furthermore, Co1-N3P1 SAC shows superior selectivity (>99%) toward many substituted nitroarenes with co-existence of other sensitive reducible groups. This work is an excellent example of relationship between catalytic performance and the coordination environment of SACs, and offers a potential practical catalyst for aromatic amine synthesis by hydrogenation of nitroarenes.