Published in

BioMed Central, Genome Biology, 1(22), 2021

DOI: 10.1186/s13059-021-02426-8

Links

Tools

Export citation

Search in Google Scholar

Haploflow: strain-resolved de novo assembly of viral genomes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWith viral infections, multiple related viral strains are often present due to coinfection or within-host evolution. We describe Haploflow, a deBruijn graph-based assembler for de novo genome assembly of viral strains from mixed sequence samples using a novel flow algorithm. We assess Haploflow across multiple benchmark data sets of increasing complexity, showing that Haploflow is faster and more accurate than viral haplotype assemblers and generic metagenome assemblers not aiming to reconstruct strains. We show Haploflow reconstructs viral strain genomes from patient HCMV samples and SARS-CoV-2 wastewater samples identical to clinical isolates.