Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Express, 14(30), p. 24831, 2022

DOI: 10.1364/oe.460583

Links

Tools

Export citation

Search in Google Scholar

Generation of highly pure single-photon state at telecommunication wavelength

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Telecommunication wavelength with well-developed optical communication technologies and low losses in the waveguide are advantageous for quantum applications. However, an experimental generation of non-classical states called non-Gaussian states at the telecommunication wavelength is still underdeveloped. Here, we generate highly-pure-single-photon states, one of the most primitive non-Gaussian states, by using a heralding scheme with an optical parametric oscillator and a superconducting nano-strip photon detector. The Wigner negativity, the indicator of non-classicality, of the generated single photon state is -0.228 ± 0.004, corresponded to 85.1 ± 0.7% of single photon and the best record of the minimum value at all wavelengths. The quantum-optics-technology we establish can be easily applied to the generation of various types of quantum states, opening up the possibility of continuous-variable-quantum-information processing at the telecommunication wavelength.