Published in

Nature Research, npj Computational Materials, 1(8), 2022

DOI: 10.1038/s41524-022-00749-z

Links

Tools

Export citation

Search in Google Scholar

Super-resolving microscopy images of Li-ion electrodes for fine-feature quantification using generative adversarial networks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractFor a deeper understanding of the functional behavior of energy materials, it is necessary to investigate their microstructure, e.g., via imaging techniques like scanning electron microscopy (SEM). However, active materials are often heterogeneous, necessitating quantification of features over large volumes to achieve representativity which often requires reduced resolution for large fields of view. Cracks within Li-ion electrode particles are an example of fine features, representative quantification of which requires large volumes of tens of particles. To overcome the trade-off between the imaged volume of the material and the resolution achieved, we deploy generative adversarial networks (GAN), namely SRGANs, to super-resolve SEM images of cracked cathode materials. A quantitative analysis indicates that SRGANs outperform various other networks for crack detection within aged cathode particles. This makes GANs viable for performing super-resolution on microscopy images for mitigating the trade-off between resolution and field of view, thus enabling representative quantification of fine features.