Published in

Nature Research, Scientific Data, 1(10), 2023

DOI: 10.1038/s41597-023-02224-w

Links

Tools

Export citation

Search in Google Scholar

Vegetation photosynthetic phenology dataset in northern terrestrial ecosystems

Journal article published in 2023 by Jing Fang ORCID, Xing Li, Jingfeng Xiao ORCID, Xiaodong Yan, Bolun Li, Feng Liu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractVegetation phenology can profoundly modulate the climate-biosphere interactions and thus plays a crucial role in regulating the terrestrial carbon cycle and the climate. However, most previous phenology studies rely on traditional vegetation indices, which are inadequate to characterize the seasonal activity of photosynthesis. Here, we generated an annual vegetation photosynthetic phenology dataset with a spatial resolution of 0.05 degrees from 2001 to 2020, using the latest gross primary productivity product based on solar-induced chlorophyll fluorescence (GOSIF-GPP). We combined smoothing splines with multiple change-point detection to retrieve the phenology metrics: start of the growing season (SOS), end of the growing season (EOS), and length of growing season (LOS) for terrestrial ecosystems above 30° N latitude (Northern Biomes). Our phenology product can be used to validate and develop phenology or carbon cycle models and monitor the climate change impacts on terrestrial ecosystems.