Published in

MDPI, Atmosphere, 8(13), p. 1236, 2022

DOI: 10.3390/atmos13081236

Links

Tools

Export citation

Search in Google Scholar

The Different Impact of PM2.5 on Atherogenesis in Overseas vs. Native Chinese in the CATHAY Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Air pollution (PM2.5) has been associated with cardiovascular disease (CVD) globally and with early atherosclerosis surrogate markers in modernized China. A sizeable number of Chinese have migrated overseas, with an increase in their vulnerability to CVD. To evaluate the impact of PM2.5 air pollution on atherogenesis in native vs. overseas Chinese, we recruited 756 asymptomatic native Chinese and 507 age- and gender-matched overseas Chinese from Sydney and San Francisco. Their cardiovascular profiles were evaluated. PM2.5 was derived from remote sensing technology; atherosclerosis surrogate markers, flow-mediated dilation (FMD) and carotid intima-media thickness (IMT) were measured by ultrasound. The native Chinese had a higher proportion of smokers as well as higher blood pressure, glucose, metabolic syndrome and PM2.5 exposure (p < 0.001), but lower lipids and folate than the overseas Chinese (p < 0.0001). Carotid IMT was lower in the native Chinese (p < 0.0001), but the other vascular parameters were similar. A multivariate regression revealed that FMD in the native Chinese was related to the male gender, age and location; in the overseas Chinese, it was related to age, but not to PM2.5. Carotid IMT in the native Chinese was related to PM2.5, independent of atherosclerotic risk factors and location (R2 = 0.384, F = 34.5, p < 0.0001) whereas in the overseas Chinese, IMT was related to the male gender and age, but not to PM2.5 or overseas location (R2 = 0.282, F = 19.7, p < 0.0001). PM2.5 had a greater impact on atherogenesis in the native Chinese, independent of traditional risk factors, with implications for preventive strategies.