Published in

Springer, Journal of High Energy Physics, 6(2021), 2021

DOI: 10.1007/jhep06(2021)028

Links

Tools

Export citation

Search in Google Scholar

Probing small-scale power spectra with pulsar timing arrays

Journal article published in 2021 by Vincent S. H. Lee, Andrea Mitridate, Tanner Trickle, Kathryn M. Zurek ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Models of Dark Matter (DM) can leave unique imprints on the Universe’s small scale structure by boosting density perturbations on small scales. We study the capability of Pulsar Timing Arrays to search for, and constrain, subhalos from such models. The models of DM we consider are ordinary adiabatic perturbations in ΛCDM, QCD axion miniclusters, models with early matter domination, and vector DM produced during inflation. We show that ΛCDM, largely due to tidal stripping effects in the Milky Way, is out of reach for PTAs. Axion miniclusters may be within reach, although this depends crucially on whether the axion relic density is dominated by the misalignment or string contribution. Models where there is matter domination with a reheat temperature below 1 GeV may be observed with future PTAs. Lastly, vector DM produced during inflation can be detected if it is lighter than 10−16 GeV. We also make publicly available a Python Monte Carlo tool for generating the PTA time delay signal from any model of DM substructure.