Published in

The Company of Biologists, Journal of Experimental Biology, 2023

DOI: 10.1242/jeb.245210

Links

Tools

Export citation

Search in Google Scholar

In a marine teleost, the significance of oxygen supply for acute thermal tolerance depends upon the context and the endpoint used

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Eight juvenile European seabass were exposed to two thermal ramping protocols with different levels of aerobic activity and tolerance endpoint: the critical thermal maximum for swimming (CTSmax) while exercising aerobically until fatigue, and the critical thermal maximum (CTmax) under static conditions until loss of equilibrium (LOE). In the CTSmax, warming caused a profound increase in oxygen uptake rate (M˙O2) culminating in a gait transition, from steady aerobic towards unsteady anaerobic swimming, then fatigue at 30.3±0.4°C (mean±SE). Gait transition and fatigue presumably indicate an oxygen limitation, an inability to meet the combined demands of swimming plus warming. The CTmax also elicited an increase in M˙O2, culminating in LOE at 34.0±0.4°C, significantly warmer than fatigue at CTSmax. The maximum M˙O2 achieved in the CTmax was, however, less than 30% of that achieved in the CTSmax. Therefore, the static CTmax did not exploit full cardiorespiratory capacity for oxygen supply, indicating that LOE was not caused by systemic oxygen limitation. Consequently, systemic oxygen supply can be significant for tolerance of acute warming in seabass but this depends upon the physiological context and the endpoint used.