Published in

American Association for the Advancement of Science, Science Advances, 10(9), 2023

DOI: 10.1126/sciadv.add7437

Links

Tools

Export citation

Search in Google Scholar

Effects of culling vampire bats on the spatial spread and spillover of rabies virus

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Controlling pathogen circulation in wildlife reservoirs is notoriously challenging. In Latin America, vampire bats have been culled for decades in hopes of mitigating lethal rabies infections in humans and livestock. Whether culls reduce or exacerbate rabies transmission remains controversial. Using Bayesian state-space models, we show that a 2-year, spatially extensive bat cull in an area of exceptional rabies incidence in Peru failed to reduce spillover to livestock, despite reducing bat population density. Viral whole genome sequencing and phylogeographic analyses further demonstrated that culling before virus arrival slowed viral spatial spread, but reactive culling accelerated spread, suggesting that culling-induced changes in bat dispersal promoted viral invasions. Our findings question the core assumptions of density-dependent transmission and localized viral maintenance that underlie culling bats as a rabies prevention strategy and provide an epidemiological and evolutionary framework to understand the outcomes of interventions in complex wildlife disease systems.