Published in

MDPI, Sustainability, 8(13), p. 4192, 2021

DOI: 10.3390/su13084192

Links

Tools

Export citation

Search in Google Scholar

Assessing Yield Response and Relationship of Soil Boron Fractions with Its Accumulation in Sorghum and Cowpea under Boron Fertilization in Different Soil Series

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Boron (B) is an essential micronutrient in the growth of reproductive plant parts. Its deficiency and/or toxicity are widespread in arid and semi-arid soils with low clay contents. This study was planned to determine the response of sorghum (Sorghum bicolor L., non-leguminous crop) and cowpea (Vigna sinensis L., leguminous crop) to boron (0, 2, 4, and 16 µg g−1) on four distinct soil series from Punjab, Pakistan i.e., Udic Haplustalf (Pindorian region), Typic Torrifluvent (Shahdra region), Halic Camborthid (Khurianwala region), and Udic Haplustalf (Gujranwala region). Overall, there was a significant difference (p < 0.05) in yield between the sorghum (3.8 to 5.5 g pot−1 of 5 kg dry soil) and cowpea (0.2 to 3.2 g pot−1 of 5 kg dry soil) in response to B application. The highest yield was observed in both sorghum and cowpea either in control or at 2 µg g−1 B application in all four soils. Cowpea showed the same yield trend in all four soils (i.e., an increase in yield at 2 µg g−1 B application, followed by a significant decrease at the higher B levels). In contrast, sorghum exhibited greater variability of response on different soils; Udic Haplustalf (Pindorian region) produced the greatest yield at low levels of B application. However, Halic Camborthid produced its lowest yield at that level. Boron concentration in shoots increased with the levels of B application, particularly in sorghum. In cowpea, the plant growth was extremely retarded—and most of the plants died at higher levels of B application even if a lower concentration of B was measured within the shoot. Hot water-extractable B was the most available fraction for cowpea (R2 = 0.96), whereas the easily exchangeable B was most available for sorghum (R2 = 0.90). Overall, these results have implications for micronutrient uptake for both leguminous and non-leguminous crops.