Published in

MDPI, Micromachines, 4(14), p. 716, 2023

DOI: 10.3390/mi14040716

Links

Tools

Export citation

Search in Google Scholar

Heterogeneous Multi-Material Flexible Piezoresistive Sensor with High Sensitivity and Wide Measurement Range

Journal article published in 2023 by Tingting Yu, Yebo Tao, Yali Wu, Dongguang Zhang, Jiayi Yang ORCID, Gang Ge ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Flexible piezoresistive sensors (FPSs) have the advantages of compact structure, convenient signal acquisition and fast dynamic response; they are widely used in motion detection, wearable electronic devices and electronic skins. FPSs accomplish the measurement of stresses through piezoresistive material (PM). However, FPSs based on a single PM cannot achieve high sensitivity and wide measurement range simultaneously. To solve this problem, a heterogeneous multi-material flexible piezoresistive sensor (HMFPS) with high sensitivity and a wide measurement range is proposed. The HMFPS consists of a graphene foam (GF), a PDMS layer and an interdigital electrode. Among them, the GF serves as a sensing layer, providing high sensitivity, and the PDMS serves as a supporting layer, providing a large measurement range. The influence and principle of the heterogeneous multi-material (HM) on the piezoresistivity were investigated by comparing the three HMFPS with different sizes. The HM proved to be an effective way to produce flexible sensors with high sensitivity and a wide measurement range. The HMFPS-10 has a sensitivity of 0.695 kPa−1, a measurement range of 0–14,122 kPa, fast response/recovery (83 ms and 166 ms) and excellent stability (2000 cycles). In addition, the potential application of the HMFPS-10 in human motion monitoring was demonstrated.