Published in

MDPI, Plants, 23(11), p. 3317, 2022

DOI: 10.3390/plants11233317

Links

Tools

Export citation

Search in Google Scholar

The Effects of Microbiota on the Herbivory Resistance of the Giant Duckweed Are Plant Genotype-Dependent

Journal article published in 2022 by Martin Schäfer ORCID, Shuqing Xu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In nature, all plants live with microbes, which can directly affect their host plants’ physiology and metabolism, as well as their interacting partners, such as herbivores. However, to what extent the microbiota shapes the adaptive evolution to herbivory is unclear. To address this challenge, it is essential to quantify the intra-specific variations of microbiota effects on plant fitness. Here, we quantified the fitness effects of microbiota on the growth, tolerance, and resistance to herbivory among six genotypes of the giant duckweed, Spirodela polyrhiza. We found that the plant genotypes differed in their intrinsic growth rate and tolerance, but not in their resistance to a native herbivore, the great pond snail. Inoculation with microbiota associated with S. polyrhiza growing outdoors reduced the growth rate and tolerance in all genotypes. Additionally, the microbiota treatment altered the herbivory resistance in a genotype-specific manner. Together, these data show the potential of microbiota in shaping the adaptive evolution of plants.