Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6643(380), p. 404-409, 2023

DOI: 10.1126/science.adg3755

Links

Tools

Export citation

Search in Google Scholar

Minimizing buried interfacial defects for efficient inverted perovskite solar cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Controlling the perovskite morphology and defects at the buried perovskite-substrate interface is challenging for inverted perovskite solar cells. In this work, we report an amphiphilic molecular hole transporter, (2-(4-(bis(4-methoxyphenyl)amino)phenyl)-1-cyanovinyl)phosphonic acid, that features a multifunctional cyanovinyl phosphonic acid group and forms a superwetting underlayer for perovskite deposition, which enables high-quality perovskite films with minimized defects at the buried interface. The resulting perovskite film has a photoluminescence quantum yield of 17% and a Shockley-Read-Hall lifetime of nearly 7 microseconds and achieved a certified power conversion efficiency (PCE) of 25.4% with an open-circuit voltage of 1.21 volts and a fill factor of 84.7%. In addition, 1–square centimeter cells and 10–square centimeter minimodules show PCEs of 23.4 and 22.0%, respectively. Encapsulated modules exhibited high stability under both operational and damp heat test conditions.