Published in

MDPI, Nutrients, 23(14), p. 5038, 2022

DOI: 10.3390/nu14235038

Links

Tools

Export citation

Search in Google Scholar

Immune Impairment Associated with Vitamin A Deficiency: Insights from Clinical Studies and Animal Model Research

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Vitamin A (VA) is critical for many biological processes, including embryonic development, hormone production and function, the maintenance and modulation of immunity, and the homeostasis of epithelium and mucosa. Specifically, VA affects cell integrity, cytokine production, innate immune cell activation, antigen presentation, and lymphocyte trafficking to mucosal surfaces. VA also has been reported to influence the gut microbiota composition and diversity. Consequently, VA deficiency (VAD) results in the imbalanced production of inflammatory and immunomodulatory cytokines, intestinal inflammation, weakened mucosal barrier functions, reduced reactive oxygen species (ROS) and disruption of the gut microbiome. Although VAD is primarily known to cause xerophthalmia, its role in the impairment of anti-infectious defense mechanisms is less defined. Infectious diseases lead to temporary anorexia and lower dietary intake; furthermore, they adversely affect VA status by interfering with VA absorption, utilization and excretion. Thus, there is a tri-directional relationship between VAD, immune response and infections, as VAD affects immune response and predisposes the host to infection, and infection decreases the intestinal absorption of the VA, thereby contributing to secondary VAD development. This has been demonstrated using nutritional and clinical studies, radiotracer studies and knockout animal models. An in-depth understanding of the relationship between VAD, immune response, gut microbiota and infections is critical for optimizing vaccine efficacy and the development of effective immunization programs for countries with high prevalence of VAD. Therefore, in this review, we have comprehensively summarized the existing knowledge regarding VAD impacts on immune responses to infections and post vaccination. We have detailed pathological conditions associated with clinical and subclinical VAD, gut microbiome adaptation to VAD and VAD effects on the immune responses to infection and vaccines.