Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Light: Science and Applications, 1(10), 2021

DOI: 10.1038/s41377-021-00531-8

Links

Tools

Export citation

Search in Google Scholar

Non-linear self-driven spectral tuning of Extreme Ultraviolet Femtosecond Pulses in monoatomic materials

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSelf-action nonlinearity is a key aspect – either as a foundational element or a detrimental factor – of several optical spectroscopies and photonic devices. Supercontinuum generation, wavelength converters, and chirped pulse amplification are just a few examples. The recent advent of Free Electron Lasers (FEL) fostered building on nonlinearity to propose new concepts and extend optical wavelengths paradigms for extreme ultraviolet (EUV) and X-ray regimes. No evidence for intrapulse dynamics, however, has been reported at such short wavelengths, where the light-matter interactions are ruled by the sharp absorption edges of core electrons. Here, we provide experimental evidence for self-phase modulation of femtosecond FEL pulses, which we exploit for fine self-driven spectral tunability by interaction with sub-micrometric foils of selected monoatomic materials. Moving the pulse wavelength across the absorption edge, the spectral profile changes from a non-linear spectral blue-shift to a red-shifted broadening. These findings are rationalized accounting for ultrafast ionization and delayed thermal response of highly excited electrons above and below threshold, respectively.