Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Entropy, 8(23), p. 1059, 2021

DOI: 10.3390/e23081059

Links

Tools

Export citation

Search in Google Scholar

PFC: A Novel Perceptual Features-Based Framework for Time Series Classification

Journal article published in 2021 by Shaocong Wu ORCID, Xiaolong Wang ORCID, Mengxia Liang ORCID, Dingming Wu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Time series classification (TSC) is a significant problem in data mining with several applications in different domains. Mining different distinguishing features is the primary method. One promising method is algorithms based on the morphological structure of time series, which are interpretable and accurate. However, existing structural feature-based algorithms, such as time series forest (TSF) and shapelet traverse, all features through many random combinations, which means that a lot of training time and computing resources are required to filter meaningless features, important distinguishing information will be ignored. To overcome this problem, in this paper, we propose a perceptual features-based framework for TSC. We are inspired by how humans observe time series and realize that there are usually only a few essential points that need to be remembered for a time series. Although the complex time series has a lot of details, a small number of data points is enough to describe the shape of the entire sample. First, we use the improved perceptually important points (PIPs) to extract key points and use them as the basis for time series segmentation to obtain a combination of interval-level and point-level features. Secondly, we propose a framework to explore the effects of perceptual structural features combined with decision trees (DT), random forests (RF), and gradient boosting decision trees (GBDT) on TSC. The experimental results on the UCR datasets show that our work has achieved leading accuracy, which is instructive for follow-up research.