Published in

IOP Publishing, New Journal of Physics, 2(25), p. 023029, 2023

DOI: 10.1088/1367-2630/acbc3f

Links

Tools

Export citation

Search in Google Scholar

Observation of an anomalous Hall effect in single-crystal Mn<sub>3</sub>Pt

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The Mn3X family of compounds was the first in which a large anomalous Hall effect (AHE) was predicted to arise from a purely antiferromagnetic structure, due to the Berry curvature in momentum space. Nearly simultaneously with this prediction, a large AHE was observed experimentally in one of the hexagonal members of this family, Mn3Sn. Aligning antiferromagnetic domains, a necessary step for observation of the AHE, is more challenging for the cubic members of the Mn3X family, due to a combination of smaller spontaneous ferromagnetic moments and much stronger magnetic anisotropy. Here, we use a combination of uniaxial stress and applied magnetic field to align domains of bulk single-crystal Mn3Pt, and demonstrate for the first time a substantial AHE in a bulk sample of a cubic member of the Mn3X family. The AHE remains locked in with essentially no quantitative variation when the stress is ramped back to zero, which shows that it is not a consequence of any stress-induced ferromagnetic moment.