Published in

Frontiers Media, Frontiers in Energy Research, (10), 2022

DOI: 10.3389/fenrg.2022.873800

Links

Tools

Export citation

Search in Google Scholar

The Levelized Cost of Storage of Electrochemical Energy Storage Technologies in China

Journal article published in 2022 by Yan Xu, Jiamei Pei, Liang Cui, Pingkuo Liu, Tianjiao Ma
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Large-scale electrochemical energy storage (EES) can contribute to renewable energy adoption and ensure the stability of electricity systems under high penetration of renewable energy. However, the commercialization of the EES industry is largely encumbered by its cost; therefore, this study studied the technical characteristics and economic analysis of EES and presents a detailed analysis of the levelized cost of storage (LCOS) for different EES technologies. The results show that in the application of energy storage peak shaving, the LCOS of lead-carbon (12 MW power and 24 MWh capacity) is 0.84 CNY/kWh, that of lithium iron phosphate (60 MW power and 240 MWh capacity) is 0.94 CNY/kWh, and that of the vanadium redox flow (200 MW power and 800 MWh capacity) is 1.21 CNY/kWh. A detailed analysis of the cost breakdown shows that the proportion of the Capex and charging costs of EES projects are relatively high, while the Opex and tax costs are comparatively low. The difference between EES projects lies in the proportion of replacement costs. Finally, a sensitivity analysis considering four factors is presented, with this study considering the impact of round-trip efficiency, storage duration, unit initial investment, and the storage application scenario on the LCOS of EES. Among them, the LCOS varies with different application scenarios. For transmission and distribution (T&D) application, the LCOS of lithium iron phosphate is the lowest, due to its long-life advantage compared to lead-carbon.