Dissemin is shutting down on January 1st, 2025

Published in

Open Science Framework, 2022

DOI: 10.17605/osf.io/v5acr

Springer, Lecture Notes in Computer Science, p. 502-514, 2023

DOI: 10.1007/978-3-031-27077-2_39

Links

Tools

Export citation

Search in Google Scholar

ScopeSense: An 8.5-Month Sport, Nutrition, and Lifestyle Lifelogging Dataset

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Article describing the dataset: https://osf.io/8z5gc/ Nowadays, almost every person has a smartphone tracking their everyday activity. Furthermore, a significant number of people wear advanced smartwatches to track several vital biomarkers in addition to activity data. However, it is still unclear how these data can actually be used to improve certain aspects of people’s lives. One of the key challenges is that the collected data is often massive and unstructured. Therefore, a link to other important information (e.g., when, what, and how much food was consumed) is required. It is widely believed that such detailed and structured longitudinal data about a person is essential to model and provide personalized and precise guidance. Despite the strong belief of researchers about the power of such data-driven approach, respective datasets have been difficult to collect. In this study, we present a unique dataset from two individuals performing a structured data collection over eight and a half months. In addition to the sensor data, we collected their nutrition, training, and well-being data. Availability of nutrition data with many other important objective and subjective longitudinal data streams may facilitate research related to food for a healthy lifestyle. We present such a sport, nutrition, and lifestyle logging dataset called ScopeSense from two individuals and discuss its potential use. The dataset is fully open for researchers, and we consider this study as a potential starting point for developing methods to collect and create knowledge for a larger cohort of people.