Published in

MDPI, Insects, 1(13), p. 27, 2021

DOI: 10.3390/insects13010027

Links

Tools

Export citation

Search in Google Scholar

Effect of Cry Toxins on Xylotrechus arvicola (Coleoptera: Cerambycidae) Larvae

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The beetle Xylotrechus arvicola is a destructive pest in vineyards (Vitis vinifera) in the main wine-producing areas of the Iberian Peninsula. X. arvicola larvae bore into the grapevine wood-making galleries, thus damaging the plant both directly and indirectly; the latter through the proliferation of wood fungi, which can invade the inside of the plant, decreasing the quality and quantity of its production. The susceptibility of X. arvicola larvae to five coleopteran toxic Cry proteins (Cry1B, Cry1I, Cry3A, Cry7A, and Cry23/37) was evaluated under laboratory conditions in order to deepen the knowledge of the effect of these proteins on this insect throughout its biological development. Cry7Ab and Cry1Ba were the most effective in controlling X. arvicola larvae due to the significant reduction in larvae survival (32.9 and 25.9 days, respectively), and by causing serious alterations in the larvae during the remaining months of their development. The developmental stage of the prepupal and pupal stages was not affected by the previous ingestion of Cry proteins. The Cry proteins tested could be applied to control X. arvicola larvae since they were able to kill them and cause serious alterations in the larvae during the remaining months of development that followed. The data presented suggest that these Cry proteins can be used as bioinsecticides against the larvae of this insect, applying them only at the moment when the larvae hatch from the egg outside the grapevine wood (this would only be useful and justified if the economic threshold is exceeded) in order to avoid the rapid evolution of resistance against these toxins since not all of the larvae were killed and thus increase vine wood protection.