Published in

Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 11(106), p. 3196-3212, 2021

DOI: 10.1210/clinem/dgab520

Links

Tools

Export citation

Search in Google Scholar

White Matter Microstructural Differences in Youth With Classical Congenital Adrenal Hyperplasia

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Context Gray matter morphology in the prefrontal cortex and subcortical regions, including the hippocampus and amygdala, are affected in youth with classical congenital adrenal hyperplasia (CAH). It remains unclear if white matter connecting these aforementioned brain regions is compromised in youth with CAH. Objective To examine brain white matter microstructure in youth with CAH compared to controls. Design A cross-sectional sample of 23 youths with CAH due to 21-hydroxylase deficiency (12.9 ± 3.5 year; 61% female) and 33 healthy controls (13.1 ± 2.8 year; 61% female) with 3T multishell diffusion-weighted magnetic resonance brain scans. Main Outcome Measures Complementary modeling approaches, including diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to examine in vivo white matter microstructure in six white matter tracts that innervate the prefrontal and subcortical regions. Results DTI showed CAH youth had lower fractional anisotropy in both the fornix and stria terminalis and higher mean diffusivity in the fornix compared to controls. NODDI modeling revealed that CAH youth have a significantly higher orientation dispersion index in the stria terminalis compared to controls. White matter microstructural integrity was associated with smaller hippocampal and amygdala volumes in CAH youth. Conclusions These patterns of microstructure reflect less restricted water diffusion likely due to less coherency in oriented microstructure. These results suggest that white matter microstructural integrity in the fornix and stria terminalis is compromised and may be an additional related brain phenotype alongside affected hippocampus and amygdala neurocircuitry in individuals with CAH.