Published in

American Institute of Physics, Applied Physics Letters, 6(121), p. 060503, 2022

DOI: 10.1063/5.0098838

Links

Tools

Export citation

Search in Google Scholar

Progress and challenges on 3D tubular structures and devices of 2D materials

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Due to their unique structures and properties, emerging two-dimensional (2D) materials have been at the frontier of research in, e.g., materials science, physics, and engineering. Three-dimensional (3D) tubular geometry enables 2D materials unparalleled advantages for various applications, for example, wide-angle infrared photodetectors, extremely sensitive molecular sensors, and memory with high density. Furthermore, 3D tubular structures offer a promising integration platform into chips with a broad range of materials, especially 2D materials. In this Perspective, we highlight state-of-the-art methods to assemble/manufacture 2D materials into 3D tubular structures/devices via self-rolled-up or template methods. These tubular 3D devices inspire unique physical, chemical, and mechanical properties for optical microcavity, photodetector, on-chip electronics, and bubble-propelled microengines. On-chip manufacture of 3D tubular structures/devices provides great opportunity and challenge for 2D materials for More than Moore applications such as unconventional electronics, smart sensors, and miniaturized robots.