Published in

Oxford University Press, Nucleic Acids Research, Web Server(32), p. W485-W491, 2004

DOI: 10.1093/nar/gkh421

Links

Tools

Export citation

Search in Google Scholar

New challenges in gene expression data analysis and the extended GEPAS

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Since the first papers published in the late nineties, including, for the first time, a comprehensive analysis of microarray data, the number of questions that have been addressed through this technique have both increased and diversified. Initially, interest focussed on genes coexpressing across sets of experimental conditions, implying, essentially, the use of clustering techniques. Recently, however, interest has focussed more on finding genes differentially expressed among distinct classes of experiments, or correlated to diverse clinical outcomes, as well as in building predictors. In addition to this, the availability of accurate genomic data and the recent implementation of CGH arrays has made mapping expression and genomic data on the chromosomes possible. There is also a clear demand for methods that allow the automatic transfer of biological information to the results of microarray experiments. Different initiatives, such as the Gene Ontology (GO) consortium, pathways databases, protein functional motifs, etc., provide curated annotations for genes. Whereas many resources on the web focus mainly on clustering methods, GEPAS has evolved to cope with the aforementioned new challenges that have recently arisen in the field of microarray data analysis. The web-based pipeline for microarray gene expression data, GEPAS, is available at http://gepas.bioinfo.cnio.es.