Dissemin is shutting down on January 1st, 2025

Published in

2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021

DOI: 10.1109/embc46164.2021.9630166

Springer, Journal of Clinical Monitoring and Computing, 6(36), p. 1739-1752, 2022

DOI: 10.1007/s10877-022-00822-4

Links

Tools

Export citation

Search in Google Scholar

A model-based approach to generating annotated pressure support waveforms

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractLarge numbers of asynchronies during pressure support ventilation cause discomfort and higher work of breathing in the patient, and are associated with an increased mortality. There is a need for real-time decision support to detect asynchronies and assist the clinician towards lung-protective ventilation. Machine learning techniques have been proposed to detect asynchronies, but they require large datasets with sufficient data diversity, sample size, and quality for training purposes. In this work, we propose a method for generating a large, realistic and labeled, synthetic dataset for training and validating machine learning algorithms to detect a wide variety of asynchrony types. We take a model-based approach in which we adapt a non-linear lung-airway model for use in a diverse patient group and add a first-order ventilator model to generate labeled pressure, flow, and volume waveforms of pressure support ventilation. The model was able to reproduce basic measured lung mechanics parameters. Experienced clinicians were not able to differentiate between the simulated waveforms and clinical data (P = 0.44 by Fisher’s exact test). The detection performance of the machine learning trained on clinical data gave an overall comparable true positive rate on clinical data and on simulated data (an overall true positive rate of 94.3% and positive predictive value of 93.5% on simulated data and a true positive rate of 98% and positive predictive value of 98% on clinical data). Our findings demonstrate that it is possible to generate labeled pressure and flow waveforms with different types of asynchronies.