Published in

American Association for Cancer Research, Cancer Research, 3(82), p. 359-361, 2022

DOI: 10.1158/0008-5472.can-21-4311

Links

Tools

Export citation

Search in Google Scholar

EZH2 Inhibitors: The Unpacking Revolution

Journal article published in 2022 by Vera Adema ORCID, Simona Colla
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The methylation of lysine 27 on histone H3 (H3K27me3) is a chromatin mark associated with nucleosome condensation and gene expression silencing. EZH2 is a lysine methyltransferase that catalyzes H3K27me3. In this issue of Cancer Research, Porazzi and colleagues report that pretreatment with EZH2 inhibitors opened up the H3K27me3-marked chromatin of acute myeloid leukemia (AML) cells, which enhanced DNA damage and apoptosis induced by chemotherapeutic agents, in particular the topoisomerase II inhibitors, doxorubicin and etoposide. The EZH2 inhibitor/doxorubicin combination also enabled the expression of proapoptotic genes, potentially contributing to the death of AML cells. This study has significant implications for improving the efficacy of DNA-damaging cytotoxic agents in AML, thereby enabling lower chemotherapy doses and reducing treatment-related side effects. See related article by Porazzi et al., p. 458