Dissemin is shutting down on January 1st, 2025

Published in

American Heart Association, Circulation: Genomic and Precision Medicine, 5(14), 2021

DOI: 10.1161/circgen.121.003389

Links

Tools

Export citation

Search in Google Scholar

Contribution of Noncanonical Splice Variants to TTN Truncating Variant Cardiomyopathy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background:HeterozygousTTNtruncating variants cause 10% to 20% of idiopathic dilated cardiomyopathy (DCM). Although variants which disrupt canonical splice signals (ie, invariant dinucleotide of the splice donor site, invariant dinucleotide of the splice acceptor site) at exon-intron junctions are readily recognized asTTNtruncating variants, the effects of other nearby sequence variations on splicing and their contribution to disease is uncertain.Methods:Rare variants of unknown significance located in the splice regions of highly expressedTTNexons from 203 DCM cases, 3329 normal subjects, and clinical variant databases were identified. The effects of these variants on splicing were assessed using an in vitro splice assay.Results:Splice-altering variants of unknown significance were enriched in DCM cases over controls and present in 2% of DCM patients (P=0.002). Application of this method to clinical variant databases demonstrated 20% of similar variants of unknown significance inTTNsplice regions affect splicing. Noncanonical splice-altering variants were most frequently located at position +5 of the donor site (P=4.4×107) and position -3 of the acceptor site (P=0.002). SpliceAI, an emerging in silico prediction tool, had a high positive predictive value (86%–95%) but poor sensitivity (15%–50%) for the detection of splice-altering variants. Alternate exons spliced out of mostTTNtranscripts frequently lacked the consensus base at +5 donor and −3 acceptor positions.Conclusions:Noncanonical splice-altering variants inTTNexplain 1-2% of DCM and offer a 10-20% increase in the diagnostic power ofTTNsequencing in this disease. These data suggest rules that may improve efforts to detect splice-altering variants in other genes and may explain the low percent splicing observed for many alternateTTNexons.