Published in

Elsevier, Journal of Investigative Dermatology, 8(131), p. 1605-1614, 2011

DOI: 10.1038/jid.2011.122

Links

Tools

Export citation

Search in Google Scholar

Activation of transient receptor potential vanilloid-3 inhibits human hair growth

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the current study, we aimed at identifying the functional role of transient receptor potential vanilloid-3 (TRPV3) ion channel in the regulation of human hair growth. Using human organ-cultured hair follicles (HFs) and cultures of human outer root sheath (ORS) keratinocytes, we provide the first evidence that activation of TRPV3 inhibits human hair growth. TRPV3 immunoreactivity was confined to epithelial compartments of the human HF, mainly to the ORS. In organ culture, TRPV3 activation by plant-derived (e.g., eugenol, 10-1,000 μM) or synthetic (e.g., 2-aminoethoxydiphenyl borate, 1-300 μM) agonists resulted in a dose-dependent inhibition of hair shaft elongation, suppression of proliferation, and induction of apoptosis and premature HF regression (catagen). Human ORS keratinocytes also expressed functional TRPV3, whose stimulation induced membrane currents, elevated intracellular calcium concentration, inhibited proliferation, and induced apoptosis. Of great importance, these effects on ORS keratinocytes were all mediated by TRPV3, as small interfering RNA-mediated silencing of TRPV3 effectively abrogated the cellular actions of the above agonists. These findings collectively support the concept that TRPV3 signaling is a significant player in human hair growth control. Therefore, TRPV3 and the related intracellular signaling mechanism might function as a promising target for pharmacological manipulations of clinically relevant hair growth disorders.