Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Biomolecules, 2(13), p. 357, 2023

DOI: 10.3390/biom13020357

Links

Tools

Export citation

Search in Google Scholar

Mechanistic Analysis of CCP1 in Generating ΔC2 α-Tubulin in Mammalian Cells and Photoreceptor Neurons

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

An important post-translational modification (PTM) of α-tubulin is the removal of amino acids from its C-terminus. Removal of the C-terminal tyrosine residue yields detyrosinated α-tubulin, and subsequent removal of the penultimate glutamate residue produces ΔC2-α-tubulin. These PTMs alter the ability of the α-tubulin C-terminal tail to interact with effector proteins and are thereby thought to change microtubule dynamics, stability, and organization. The peptidase(s) that produces ΔC2-α-tubulin in a physiological context remains unclear. Here, we take advantage of the observation that ΔC2-α-tubulin accumulates to high levels in cells lacking tubulin tyrosine ligase (TTL) to screen for cytosolic carboxypeptidases (CCPs) that generate ΔC2-α-tubulin. We identify CCP1 as the sole peptidase that produces ΔC2-α-tubulin in TTLΔ HeLa cells. Interestingly, we find that the levels of ΔC2-α-tubulin are only modestly reduced in photoreceptors of ccp1−/− mice, indicating that other peptidases act synergistically with CCP1 to produce ΔC2-α-tubulin in post-mitotic cells. Moreover, the production of ΔC2-α-tubulin appears to be under tight spatial control in the photoreceptor cilium: ΔC2-α-tubulin persists in the connecting cilium of ccp1−/− but is depleted in the distal portion of the photoreceptor. This work establishes the groundwork to pinpoint the function of ΔC2-α-tubulin in proliferating and post-mitotic mammalian cells.