Published in

Elsevier, Nitric Oxide, (35), p. 72-78

DOI: 10.1016/j.niox.2013.08.006

Links

Tools

Export citation

Search in Google Scholar

The nitric oxide redox sibling nitroxyl partially circumvents impairment of platelet nitric oxide responsiveness

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Impaired platelet responsiveness to nitric oxide (NO resistance) is a common characteristic of many cardiovascular disease states and represents an independent risk factor for cardiac events and mortality. NO resistance reflects both scavenging of NO by superoxide (O2(-)), and impairment of the NO receptor, soluble guanylate cyclase (sGC). There is thus an urgent need for circumvention of NO resistance in order to improve clinical outcomes. Nitroxyl (HNO), like NO, produces vasodilator and anti-aggregatory effects, largely via sGC activation, but is not inactivated by O2(-). We tested the hypothesis that HNO circumvents NO resistance in human platelets. In 57 subjects with or without ischemic heart disease, platelet responses to the HNO donor isopropylamine NONOate (IPA/NO) and the NO donor sodium nitroprusside (SNP) were compared. While SNP (10μM) induced 29±3% (p<0.001) inhibition of platelet aggregation, IPA/NO (10μM) caused 75±4% inhibition (p<0.001). In NO-resistant subjects (n=28), the IPA/NO:SNP response ratio was markedly increased (p<0.01), consistent with partial circumvention of NO resistance. Similarly, cGMP accumulation in platelets was greater (p<0.001) with IPA/NO than with SNP stimulation. The NO scavenger carboxy-PTIO (CPTIO, 200 μM) inhibited SNP and IPA/NO responses by 92 ± 7% and 17 ± 4% respectively (p<0.001 for differential inhibition), suggesting that effects of IPA/NO are only partially NO-mediated. ODQ (10 μM) inhibited IPA/NO responses by 36 ± 8% (p<0.001), consistent with a contribution of sGC/haem to IPA/NO inhibition of aggregation. There was no significant relationship between whole blood ROS content and IPA/NO responses. Thus the HNO donor IPA/NO substantially circumvents platelet NO resistance while acting, at least partially, as a haem-mediated sGC activator.