Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 11(17), p. e0276647, 2022

DOI: 10.1371/journal.pone.0276647

Links

Tools

Export citation

Search in Google Scholar

Cardiometabolic risk profiles in a Sri Lankan twin and singleton sample

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Introduction Prevention of cardiovascular disease and diabetes is a priority in low- and middle-income countries, especially in South Asia where these are leading causes of morbidity and mortality. The metabolic syndrome is a tool to identify cardiometabolic risk, but the validity of the metabolic syndrome as a clinical construct is debated. This study tested the existence of the metabolic syndrome, explored alternative cardiometabolic risk characterisations, and examined genetic and environmental factors in a South Asian population sample. Methods Data came from the Colombo Twin and Singleton follow-up Study, which recruited twins and singletons in Colombo, Sri Lanka, in 2012–2015 (n = 3476). Latent class analysis tested the clustering of metabolic syndrome indicators (waist circumference, high-density lipoprotein cholesterol, triglycerides, blood pressure, fasting plasma glucose, medications, and diabetes). Regression analyses tested cross-sectional associations between the identified latent cardiometabolic classes and sociodemographic covariates and health behaviours. Structural equation modelling estimated genetic and environmental contributions to cardiometabolic risk profiles. All analyses were stratified by sex (n = 1509 men, n = 1967 women). Results Three classes were identified in men: 1) “Healthy” (52.3%), 2) “Central obesity, high triglycerides, high fasting plasma glucose” (40.2%), and 3) “Central obesity, high triglycerides, diabetes” (7.6%). Four classes were identified in women: 1) “Healthy” (53.2%), 2) “Very high central obesity, low high-density lipoprotein cholesterol, raised fasting plasma glucose” (32.8%), 3) “Very high central obesity, diabetes” (7.2%) and 4) “Central obesity, hypertension, raised fasting plasma glucose” (6.8%). Older age in men and women, and high socioeconomic status in men, was associated with cardiometabolic risk classes, compared to the “Healthy” classes. In men, individual differences in cardiometabolic class membership were due to environmental effects. In women, genetic differences predicted class membership. Conclusion The findings did not support the metabolic syndrome construct. Instead, distinct clinical profiles were identified for men and women, suggesting different aetiological pathways.