American Meteorological Society, Journal of Climate, 6(36), p. 1605-1631, 2023
Full text: Unavailable
Abstract We present four 140-yr wind-wave climate simulations (1961–2100) forced with surface wind speed and sea ice concentration from two CMIP6 GCMs under two different climate scenarios: SSP1–2.6 and SSP5–8.5. A global three-grid system is implemented in WAVEWATCH III to simulate the wave–ice interactions in the Arctic and Antarctic regions. The models perform well in comparison with global satellite altimeter and in situ buoys climatology. The comparison with traditional trend analyses demonstrates the present GCM-forced wave models’ ability to reproduce the main historical climate signals. The long-term datasets allow a comprehensive description of the twentieth- and twenty-first-century wave climate and yield statistically robust trends. Analysis of the latest IPCC ocean climatic regions highlights four regions where changes in wave climate are projected to be most significant: the Arctic, the North Pacific, the North Atlantic, and the Southern Ocean. The main driver of offshore wave climate change is the wind, except for the Arctic where the significant sea ice retreat causes a sharp increase in the projected wave heights. Distinct changes in the wave period and the wave direction are found in the Southern Hemisphere, where the poleward shift of the Southern Ocean westerlies causes an increase in the wave period of up to 5% and a counterclockwise change in wave direction of up to 5°. The new CMIP6 forced wave models improve in performance compared to previous CMIP5 forced wave models, and will ultimately contribute to a new CMIP6 wind-wave climate model ensemble, crucial for coastal adaptation strategies and the design of future marine offshore structures and operations. Significance Statement The purpose of this study is to advance the understanding of ocean wind-wave climate evolution over the twentieth and twenty-first centuries and to effectively communicate the long-term impacts of climate change in diverse wind-wave climatic regions across the globe. The 140-yr continuous model results produced in this work are crucial to studying changes in extreme sea states and investigating the relationship between interdecadal periodic oscillations and long-term climate trends. The dataset produced can be used to gain further insight into the substantial long-term changes of the polar wind-wave climate caused by the rapid decrease of sea ice coverage, and the evolution of the directional changes in the sea states triggered by climate change.