Published in

BMJ Publishing Group, Journal of Medical Genetics, p. jmg-2022-108828, 2022

DOI: 10.1136/jmg-2022-108828

Links

Tools

Export citation

Search in Google Scholar

Genetic diagnosis of Duchenne and Becker muscular dystrophy through mRNA analysis: new splicing events

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BackgroundUp to 7% of patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) remain genetically undiagnosed after routine genetic testing. These patients are thought to carry deep intronic variants, structural variants or splicing alterations not detected through multiplex ligation-dependent probe amplification or exome sequencing.MethodsRNA was extracted from seven muscle biopsy samples of patients with genetically undiagnosed DMD/BMD after routine genetic diagnosis. RT-PCR of theDMDgene was performed to detect the presence of alternative transcripts. Droplet digital PCR and whole-genome sequencing were also performed in some patients.ResultsWe identified an alteration in the mRNA level in all the patients. We detected three pseudoexons inDMDcaused by deep intronic variants, two of them not previously reported. We also identified a chromosomal rearrangement between Xp21.2 and 8p22. Furthermore, we detected three exon skipping events with unclear pathogenicity.ConclusionThese findings indicate that mRNA analysis of theDMDgene is a valuable tool to reach a precise genetic diagnosis in patients with a clinical and anatomopathological suspicion of dystrophinopathy that remain genetically undiagnosed after routine genetic testing.