Published in

MDPI, International Journal of Environmental Research and Public Health, 24(19), p. 16766, 2022

DOI: 10.3390/ijerph192416766

Links

Tools

Export citation

Search in Google Scholar

Effects of Inspiratory Muscle Training on Muscle Oxygenation during Vascular Occlusion Testing in Trained Healthy Adult Males

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Inspiratory muscle training (IMT) may have an additional effect on cardiovascular autonomic modulation, which could improve the metabolism and vascular function of the muscles. Aim: To determine the effects of IMT on vascular and metabolic muscle changes and their relationship to changes in physical performance. Methods: Physically active men were randomly placed into an experimental (IMTG; n = 8) or IMT placebo group (IMTPG; n = 6). For IMT, resistance load was set at 50% and 15% of the maximum dynamic inspiratory strength (S-Index), respectively. Only the IMTG’s weekly load was increased by 5%. In addition, both groups carried out the same concurrent training. Besides the S-Index, a 1.5-mile running test, spirometry, and deoxyhemoglobin (HHbAUC during occlusion) and reperfusion tissue saturation index (TSIMB and TSIMP: time from minimum to baseline and to peak, respectively) in a vascular occlusion test were measured before and after the 4-week training program. In addition, resting heart rate and blood pressure were registered. Results: IMTG improved compared to IMTPG in the S-Index (Δ = 28.23 ± 26.6 cmH2O), maximal inspiratory flow (MIF: Δ = 0.91 ± 0.6 L/s), maximum oxygen uptake (Δ = 4.48 ± 1.1 mL/kg/min), 1.5-mile run time (Δ = −0.81 ± 0.2 s), TSIMB (Δ = −3.38 ± 3.1 s) and TSIMP (Δ = −5.88 ± 3.7 s) with p < 0.05. ΔVO2max correlated with S-Index (r = 0.619) and MIF (r = 0.583) with p < 0.05. Both ΔTSIMB and TSIMP correlated with ΔHHbAUC (r = 0.516 and 0.596, respectively) and with Δ1.5-mile run time (r = 0.669 and 0.686, respectively) with p < 0.05. Conclusion: IMT improves vascular function, which is related to additional improvements in physical performance.