Published in

MDPI, International Journal of Environmental Research and Public Health, 19(19), p. 12673, 2022

DOI: 10.3390/ijerph191912673

Links

Tools

Export citation

Search in Google Scholar

Muscle Quality and Functional and Conventional Ratios of Trunk Strength in Young Healthy Subjects: A Pilot Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: The trunk strength conventional ratio (CR) has been evaluated. However, the functional ratio and the ratio of strength to body weight (BW) or muscle mass (MM) have been poorly explored. Relative strength is a measure of muscle quality. Objectives: To analyze the trunk strength ratio normalized by BW and MM and compare the trunk’s conventional and functional ratios collected in isokinetic and isometric conditions. Methods: Twenty-seven healthy males (21.48 ± 2.08 years, 70.22 ± 7.65 kg) were evaluated for trunk isometric and isokinetic strength using a functional electromechanical dynamometer. Results: The extensor’s strength was greater than the flexors, with a CR of 0.41 ± 0.10 to 0.44 ± 0.10. Muscle quality was higher in eccentric contraction and high velocity for flexors and extensors. The functional flexor ratio (FFR) ranged between 0.41 ± 0.09 and 0.92 ± 0.27. The functional extensor ratio (FER) ranged between 2.53 ± 0.65 and 4.92 ± 1.26. The FFR and FER showed significant differences between velocities when considering the peak strength (p = 0.001) and mean strength (p = 0.001). Conclusions: Trunk extensors were stronger than the flexors; thus, the CR was less than one. Muscle quality was higher at a high velocity. Unlike CR, FFR and FER behaved differently at distinct velocities. This finding highlights the need to explore the behavior of the functional ratio in different populations.