Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 21(11), p. 10180, 2021

DOI: 10.3390/app112110180

Links

Tools

Export citation

Search in Google Scholar

Light-Convolution Dense Selection U-Net (LDS U-Net) for Ultrasound Lateral Bony Feature Segmentation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Scoliosis is a widespread medical condition where the spine becomes severely deformed and bends over time. It mostly affects young adults and may have a permanent impact on them. A periodic assessment, using a suitable modality, is necessary for its early detection. Conventionally, the usually employed modalities include X-ray and MRI, which employ ionising radiation and are expensive. Hence, a non-radiating 3D ultrasound imaging technique has been developed as a safe and economic alternative. However, ultrasound produces low-contrast images that are full of speckle noise, and skilled intervention is necessary for their processing. Given the prevalent occurrence of scoliosis and the limitations of scalability of human expert interventions, an automatic, fast, and low-computation assessment technique is being developed for mass scoliosis diagnosis. In this paper, a novel hybridized light-weight convolutional neural network architecture is presented for automatic lateral bony feature identification, which can help to develop a fully-fledged automatic scoliosis detection system. The proposed architecture, Light-convolution Dense Selection U-Net (LDS U-Net), can accurately segment ultrasound spine lateral bony features, from noisy images, thanks to its capabilities of smartly selecting only the useful information and extracting rich deep layer features from the input image. The proposed model is tested using a dataset of 109 spine ultrasound images. The segmentation result of the proposed network is compared with basic U-Net, Attention U-Net, and MultiResUNet using various popular segmentation indices. The results show that LDS U-Net provides a better segmentation performance compared to the other models. Additionally, LDS U-Net requires a smaller number of parameters and less memory, making it suitable for a large-batch screening process of scoliosis without a high computational requirement.