Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS Neglected Tropical Diseases, 2(16), p. e0010186, 2022

DOI: 10.1371/journal.pntd.0010186

Links

Tools

Export citation

Search in Google Scholar

Mosquito population structure, pathogen surveillance and insecticide resistance monitoring in urban regions of Crete, Greece

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

BackgroundIn Greece vector borne diseases (VBD) and foremost West Nile virus (WNV) pose an important threat to public health and the tourist industry, the primary sector of contribution to the national economy. The island of Crete, is one of Greece’s major tourist destinations receiving annually over 5 million tourists making regional VBD control both a public health and economic priority.MethodologyUnder the auspices of the Region of Crete, a systematic integrative surveillance network targeting mosquitoes and associated pathogens was established in Crete for the years 2018–2020. Using conventional and molecular diagnostic tools we investigated the mosquito species composition and population dynamics, pathogen infection occurrences in vector populations and in sentinel chickens, and the insecticide resistance status of the major vector species.Principal findingsImportant disease vectors were recorded across the island includingCulex pipiens,Aedes albopictus, andAnopheles superpictus. Over 75% of the sampled specimens were collected in the western prefectures potentially attributed to the local precipitation patterns, withCx.pipiensbeing the most dominant species. Although no pathogens (flaviviruses) were detected in the analysed mosquito specimens, chicken blood serum analyses recorded a 1.7% WNV antibody detection rate in the 2018 samples. Notably detection of the first WNV positive chicken preceded human WNV occurrence in the same region by approximately two weeks. The chitin synthase mutation I1043F (associated with high diflubenzuron resistance) was recorded at an 8% allelic frequency in Lasithi prefectureCx.pipiensmosquitoes (sampled in 2020) for the first time in Greece. Markedly,Cx.pipienspopulations in all four prefectures were found harboring thekdrmutations L1014F/C/S (associated with pyrethroid resistance) at a close to fixation rate, with mutation L1014C being the most commonly found allele (≥74% representation). Voltage gated sodium channel analyses inAe.albopictusrevealed the presence of thekdrmutations F1534C and I1532T (associated with putative mild pyrethroid resistance phenotypes) yet absence of V1016G. Allele F1534C was recorded in all prefectures (at an allelic frequency range of 25–46.6%) while I1532T was detected in populations from Chania, Rethymnon and Heraklion (at frequencies below 7.1%). Finally, nokdrmutations were detected in theAnophelesspecimens included in the analyses.Conclusions/SignificanceThe findings of our study are of major concern for VBD control in Crete, highlighting (i) the necessity for establishing seasonal integrated entomological/pathogen surveillance programs, supporting the design of targeted vector control responses and; ii) the need for establishing appropriate insecticide resistance management programs ensuring the efficacy and sustainable use of DFB and pyrethroid based products in vector control.