Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Energies, 20(14), p. 6685, 2021

DOI: 10.3390/en14206685

Links

Tools

Export citation

Search in Google Scholar

Single-Cell Oils from Oleaginous Microorganisms as Green Bio-Lubricants: Studies on Their Tribological Performance

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Biolubricants refer to eco-friendly, biodegradable, and non-toxic lubricants. Their applications are still limited compared to mineral oils; however, their sustainable credentials are making them increasingly attractive. Vegetable oils are frequently used for this purpose. However, vegetable oils have issues of low lipid productivity, dependence on climatic conditions, and need for agricultural land. Microbial oils represent a more sustainable alternative. To ensure their widespread applicability, the suitability of microbial oils from a physicochemical point of view needs to be determined first. In this study, oils obtained from various oleagenic microbes—such as microalgae, thraustochytrids, and yeasts—were characterized in terms of their fatty acid profile, viscosity, friction coefficient, wear, and thermal stability. Oleaginous microalgal strains (Auxenochlorella protothecoides and Chlorella sorokiniana), thraustochytrids strains (Aurantiochytrium limacinum SR21 and Aurantiochytrium sp. T66), and yeast strains (Rhodosporidium toruloides and Cryptococcus curvatus) synthesized 64.5%, 35.15%, 47.89%, 47.93%, 56.42%, and 52.66% of lipid content, respectively. Oils from oleaginous microalgae (A. protothecoides and C. sorokiniana) and yeasts (R. toruloides and C. curvatus) possess excellent physicochemical and tribological qualities due to high amount of monounsaturated fatty acids (oleic acid C18:1 content, 56.38%, 58.82%, 46.67%, 38.81%) than those from oleaginous thraustochytrids (A. limacinum SR21 and Aurantiochytrium sp. T66; 0.96%, 0.08%, respectively) supporting their use as renewable and biodegradable alternatives to traditional mineral oil-based lubricants. Oil obtained from microalgae showed a lower friction coefficient than oils obtained from yeasts and thraustochytrids.