MDPI, International Journal of Molecular Sciences, 9(22), p. 4575, 2021
DOI: 10.3390/ijms22094575
Full text: Download
Conventional chemotherapy for acute myeloid leukemia regimens generally encompass an intensive induction phase, in order to achieve a morphological remission in terms of bone marrow blasts (<5%). The majority of cases are classified as Primary Induction Response (PIR); unfortunately, 15% of children do not achieve remission and are defined Primary Induction Failure (PIF). This study aims to characterize the gene expression profile of PIF in children with Acute Myeloid Leukemia (AML), in order to detect molecular pathways dysfunctions and identify potential biomarkers. Given that NUP98-rearrangements are enriched in PIF-AML patients, we investigated the association of NUP98-driven genes in primary chemoresistance. Therefore, 85 expression arrays, deposited on GEO database, and 358 RNAseq AML samples, from TARGET program, were analyzed for “Differentially Expressed Genes” (DEGs) between NUP98+ and NUP98-, identifying 110 highly confident NUP98/PIF-associated DEGs. We confirmed, by qRT-PCR, the overexpression of nine DEGs, selected on the bases of the diagnostic accuracy, in a local cohort of PIF patients: SPINK2, TMA7, SPCS2, CDCP1, CAPZA1, FGFR1OP2, MAN1A2, NT5C3A and SRP54. In conclusion, the integrated analysis of NUP98 mutational analysis and transcriptome profiles allowed the identification of novel putative biomarkers for the prediction of PIF in AML.