Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Nephrology Dialysis Transplantation, 3(38), p. 764-777, 2022

DOI: 10.1093/ndt/gfac259

Links

Tools

Export citation

Search in Google Scholar

Identification of a serum and urine extracellular vesicle signature predicting renal outcome after kidney transplant

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Background A long-standing effort is dedicated towards the identification of biomarkers allowing the prediction of graft outcome after kidney transplant. Extracellular vesicles (EVs) circulating in body fluids represent an attractive candidate, as their cargo mirrors the originating cell and its pathophysiological status. The aim of the study was to investigate EV surface antigens as potential predictors of renal outcome after kidney transplant. Methods We characterized 37 surface antigens by flow cytometry, in serum and urine EVs from 58 patients who were evaluated before, and at 10–14 days, 3 months and 1 year after transplant, for a total of 426 analyzed samples. The outcome was defined according to estimated glomerular filtration rate (eGFR) at 1 year. Results Endothelial cells and platelets markers (CD31, CD41b, CD42a and CD62P) in serum EVs were higher at baseline in patients with persistent kidney dysfunction at 1 year, and progressively decreased after kidney transplant. Conversely, mesenchymal progenitor cell marker (CD1c, CD105, CD133, SSEEA-4) in urine EVs progressively increased after transplant in patients displaying renal recovery at follow-up. These markers correlated with eGFR, creatinine and proteinuria, associated with patient outcome at univariate analysis and were able to predict patient outcome at receiver operating characteristics curves analysis. A specific EV molecular signature obtained by supervised learning correctly classified patients according to 1-year renal outcome. Conclusions An EV-based signature, reflecting the cardiovascular profile of the recipient, and the repairing/regenerative features of the graft, could be introduced as a non-invasive tool for a tailored management of follow-up of patients undergoing kidney transplant.