Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6600(376), p. 1487-1491, 2022

DOI: 10.1126/science.abn7455

Links

Tools

Export citation

Search in Google Scholar

Global ocean lipidomes show a universal relationship between temperature and lipid unsaturation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Global-scale surveys of plankton communities using “omics” techniques have revolutionized our understanding of the ocean. Lipidomics has demonstrated the potential to add further essential insights on ocean ecosystem function but has yet to be applied on a global scale. We analyzed 930 lipid samples across the global ocean using a uniform high-resolution accurate-mass mass spectrometry analytical workflow, revealing previously unknown characteristics of ocean planktonic lipidomes. Focusing on 10 molecularly diverse glycerolipid classes, we identified 1151 distinct lipid species, finding that fatty acid unsaturation (i.e., number of carbon-carbon double bonds) is fundamentally constrained by temperature. We predict substantial declines in the essential fatty acid eicosapentaenoic acid over the next century, which are likely to have serious deleterious effects on economically critical fisheries.