Published in

Nature Research, npj Quantum Information, 1(9), 2023

DOI: 10.1038/s41534-022-00673-6

Links

Tools

Export citation

Search in Google Scholar

Interaction-free, single-pixel quantum imaging with undetected photons

Journal article published in 2023 by Yiquan Yang ORCID, Hong Liang ORCID, Xiaze Xu, Lijian Zhang ORCID, Shining Zhu, Xiao-Song Ma ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractA typical imaging scenario requires three basic ingredients: (1) a light source that emits light, which in turn interacts and scatters off the object of interest; (2) detection of the light being scattered from the object and (3) a detector with spatial resolution. These indispensable ingredients in typical imaging scenarios may limit their applicability in the imaging of biological or other sensitive specimens due to unavailable photon-starved detection capabilities and inevitable damage induced by interaction. Here, we propose and experimentally realize a quantum imaging protocol that alleviates all three requirements. By embedding a single-photon Michelson interferometer into a nonlinear interferometer based on induced coherence and harnessing single-pixel imaging technique, we demonstrate interaction-free, single-pixel quantum imaging of a structured object with undetected photons. Thereby, we push the capability of quantum imaging to the extreme point in which no interaction is required between object and photons and the detection requirement is greatly reduced. Our work paves the path for applications in characterizing delicate samples with single-pixel imaging at silicon-detectable wavelengths.