Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 10(16), p. e0258040, 2021

DOI: 10.1371/journal.pone.0258040

Links

Tools

Export citation

Search in Google Scholar

Detection of obstructive sleep apnea using Belun Sleep Platform wearable with neural network-based algorithm and its combined use with STOP-Bang questionnaire

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Many wearables allow physiological data acquisition in sleep and enable clinicians to assess sleep outside of sleep labs. Belun Sleep Platform (BSP) is a novel neural network-based home sleep apnea testing system utilizing a wearable ring device to detect obstructive sleep apnea (OSA). The objective of the study is to assess the performance of BSP for the evaluation of OSA. Subjects who take heart rate-affecting medications and those with non-arrhythmic comorbidities were included in this cohort. Polysomnography (PSG) studies were performed simultaneously with the Belun Ring in individuals who were referred to the sleep lab for an overnight sleep study. The sleep studies were manually scored using the American Academy of Sleep Medicine Scoring Manual (version 2.4) with 4% desaturation hypopnea criteria. A total of 78 subjects were recruited. Of these, 45% had AHI < 5; 18% had AHI 5–15; 19% had AHI 15–30; 18% had AHI ≥ 30. The Belun apnea-hypopnea index (bAHI) correlated well with the PSG-AHI (r = 0.888, P < 0.001). The Belun total sleep time (bTST) and PSG-TST had a high correlation coefficient (r = 0.967, P < 0.001). The accuracy, sensitivity, specificity in categorizing AHI ≥ 15 were 0.808 [95% CI, 0.703–0.888], 0.931 [95% CI, 0.772–0.992], and 0.735 [95% CI, 0.589–0.850], respectively. The use of beta-blocker/calcium-receptor antagonist and the presence of comorbidities did not negatively affect the sensitivity and specificity of BSP in predicting OSA. A diagnostic algorithm combining STOP-Bang cutoff of 5 and bAHI cutoff of 15 events/h demonstrated an accuracy, sensitivity, specificity of 0.938 [95% CI, 0.828–0.987], 0.944 [95% CI, 0.727–0.999], and 0.933 [95% CI, 0.779–0.992], respectively, for the diagnosis of moderate to severe OSA. BSP is a promising testing tool for OSA assessment and can potentially be incorporated into clinical practices for the identification of OSA. Trial registration: ClinicalTrial.org NCT03997916 https://clinicaltrials.gov/ct2/show/NCT03997916?term=belun+ring&draw=2&rank=1