Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 8(11), p. 3576, 2021

DOI: 10.3390/app11083576

Links

Tools

Export citation

Search in Google Scholar

Quasi-Passive Resistive Exosuit for Space Activities: Proof of Concept

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The limits of space travel are continuously evolving, and this creates increasingly extreme challenges for the crew’s health that must be addressed by the scientific community. Long-term exposure to micro-gravity, during orbital flights, contributes to muscle strength degradation and increases bone density loss. In recent years, several exercise devices have been developed to counteract the negative health effects of zero-gravity on astronauts. However, the relatively large size of these devices, the need for a dedicated space and the exercise time-frame for each astronaut, does not make these devices the best choice for future long range exploration missions. This paper presents a quasi-passive exosuit to provide muscle training using a small, portable, proprioceptive device. The exosuit promotes continuous exercise, by resisting the user’s motion, during routine all-day activity. This study assesses the effectiveness of the resistive exosuit by evaluating its effects on muscular endurance during a terrestrial walking task. The experimental assessment on biceps femoris and vastus lateralis, shows a mean increase in muscular activation of about 97.8% during five repetitions of 3 min walking task at 3 km/h. The power frequency analysis shows an increase in muscular fatigue with a reduction of EMG median frequency of about 15.4% for the studied muscles.