Published in

Springer Nature [academic journals on nature.com], Molecular Psychiatry, 12(27), p. 5086-5095, 2022

DOI: 10.1038/s41380-022-01772-8

Links

Tools

Export citation

Search in Google Scholar

Depressive symptoms in cognitively unimpaired older adults are associated with lower structural and functional integrity in a frontolimbic network

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSubclinical depressive symptoms are associated with increased risk of Alzheimer’s disease (AD), but the brain mechanisms underlying this relationship are still unclear. We aimed to provide a comprehensive overview of the brain substrates of subclinical depressive symptoms in cognitively unimpaired older adults using complementary multimodal neuroimaging data. We included cognitively unimpaired older adults from the baseline data of the primary cohort Age-Well (n = 135), and from the replication cohort ADNI (n = 252). In both cohorts, subclinical depressive symptoms were assessed using the 15-item version of the Geriatric Depression Scale; based on this scale, participants were classified as having depressive symptoms (>0) or not (0). Voxel-wise between-group comparisons were performed to highlight differences in gray matter volume, glucose metabolism and amyloid deposition; as well as white matter integrity (only available in Age-Well). Age-Well participants with subclinical depressive symptoms had lower gray matter volume in the hippocampus and lower white matter integrity in the fornix and the posterior parts of the cingulum and corpus callosum, compared to participants without symptoms. Hippocampal atrophy was recovered in ADNI, where participants with subclinical depressive symptoms also showed glucose hypometabolism in the hippocampus, amygdala, precuneus/posterior cingulate cortex, medial and dorsolateral prefrontal cortex, insula, and temporoparietal cortex. Subclinical depressive symptoms were not associated with brain amyloid deposition in either cohort. Subclinical depressive symptoms in ageing are linked with neurodegeneration biomarkers in the frontolimbic network including brain areas particularly sensitive to AD. The relationship between depressive symptoms and AD may be partly underpinned by neurodegeneration in common brain regions.