Dissemin is shutting down on January 1st, 2025

Published in

Frontiers Media, Frontiers in Cellular and Infection Microbiology, (12), 2022

DOI: 10.3389/fcimb.2022.815715

Links

Tools

Export citation

Search in Google Scholar

Comparative Fecal Microbiota Analysis of Infants With Acute Bronchiolitis Caused or Not Caused by Respiratory Syncytial Virus

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bronchiolitis due to respiratory syncytial virus (RSV) or non-RSV agents is a health-menacing lower respiratory tract (LRT) disease of infants. Whereas RSV causes more severe disease than other viral agents may, genus-dominant fecal microbiota profiles have been identified in US hospitalized infants with bronchiolitis. We investigated the fecal microbiota composition of infants admitted to an Italian hospital with acute RSV (25/37 [67.6%]; group I) or non-RSV (12/37 [32.4%]; group II) bronchiolitis, and the relationship of fecal microbiota characteristics with the clinical characteristics of infants. Group I and group II infants differed significantly (24/25 [96.0%] versus 5/12 [41.7%]; P = 0.001) regarding 90% oxygen saturation (SpO2), which is an increased respiratory effort hallmark. Accordingly, impaired feeding in infants from group I was significantly more frequent than in infants from group II (19/25 [76.0%] versus 4/12 [33.3%]; P = 0.04). Conversely, the median (IQR) length of stay was not significantly different between the two groups (seven [3–14] for group I versus five [5–10] for group II; P = 0.11). The 16S ribosomal RNA V3–V4 region amplification of infants’ fecal samples resulted in 299 annotated amplicon sequence variants. Based on alpha- and beta-diversity microbiota downstream analyses, group I and group II infants had similar bacterial communities in their samples. Additionally, comparing infants having <90% SpO2 (n = 29) with infants having ≥90% SpO2 (n = 8) showed that well-known dominant genera (Bacteroides, Bifidobacterium, Escherichia/Shigella, and Enterobacter/Veillonella) were differently, but not significantly (P = 0.44, P = 0.71, P = 0.98, and P = 0.41, respectively) abundant between the two subgroups. Overall, we showed that, regardless of RSV or non-RSV bronchiolitis etiology, no fecal microbiota-composing bacteria could be associated with the severity of acute bronchiolitis in infants. Larger and longitudinally conducted studies will be necessary to confirm these findings.