Published in

MDPI, Children, 5(9), p. 681, 2022

DOI: 10.3390/children9050681

Links

Tools

Export citation

Search in Google Scholar

Immunopathology of SARS-CoV-2 Infection: A Focus on T Regulatory and B Cell Responses in Children Compared with Adults

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

While the clinical impact of COVID-19 on adults has been massive, the majority of children develop pauci-symptomatic or even asymptomatic infection and only a minority of the latter develop a fatal outcome. The reasons of such differences are not yet established. We examined cytokines in sera and Th and B cell subpopulations in peripheral blood mononuclear cells (PBMC) from 40 children (<18 years old), evaluating the impact of COVID-19 infection during the pandemic’s first waves. We correlated our results with clinical symptoms and compared them to samples obtained from 16 infected adults and 7 healthy controls. While IL6 levels were lower in SARS-CoV-2+ children as compared to adult patients, the expression of other pro-inflammatory cytokines such as IFNγ and TNFα directly correlated with early age infection and symptoms. Th and B cell subsets were modified during pediatric infection differently with respect to adult patients and controls and within the pediatric group based on age. Low levels of IgD− CD27+ memory B cells correlated with absent/mild symptoms. On the contrary, high levels of FoxP3+/CD25high T-Regs associated with a moderate–severe clinical course in the childhood. These T and B cells subsets did not associate with severity in infected adults, with children showing a predominant expansion of immature B lymphocytes and natural regulatory T cells. This study shows differences in immunopathology of SARS-CoV-2 infection in children compared with adults. Moreover, these data could provide information that can drive vaccination endpoints for children.